ENGINEERING BLOG
Technical research and engineering insights from the team building the operating system for responsible AI operations.
121 articles · Published by MARIA OS
Designing consent, scope, and export gates that enforce data sovereignty before a single word is stored
When an AI bot joins a meeting, the first question is not 'what was said?' but 'who consented to recording?' This paper formalizes the gate architecture behind MARIA Meeting AI — a system where Consent, Scope, Export, and Speak gates form a fail-closed barrier between raw audio and persistent storage. We derive the gate evaluation algebra, prove that the composition of fail-closed gates preserves the fail-closed property, and show how the Scope gate implements information-theoretic privacy bounds by restricting full transcript access to internal-only meetings. In production deployments, the architecture achieves zero unauthorized data retention while adding less than 3ms latency per gate evaluation.
Dual-model anomaly detection, threshold engineering, gate integration, and real-time stability monitoring for autonomous agent systems
The Doctor system in MARIA OS implements organizational metacognition through dual-model anomaly detection, combining Isolation Forest for structural outlier detection and an Autoencoder for continuous deviation measurement. We detail the combined score A_combined = alpha * s(x) + (1 - alpha) * sigma(epsilon(x)), threshold design (soft throttle at 0.85, hard freeze at 0.92), and Gate Engine integration for dynamic governance-density control. We also define a stability guard that monitors lambda_max(A_t) < 1 - D_t in real time, where A_t is the operational influence matrix. Operational results show F1 = 0.94, mean detection latency of 2.3 decision cycles, and 99.7% prevention of cascading failures.
From keyword detection to action-level control: a formal shift that recasts AI routing from text classification to governance-aware execution control
Traditional AI routers treat routing as text classification: extract keywords, map to categories, and dispatch handlers. For enterprise-grade agentic systems, this approach is often insufficient. We formalize the Action Router as a function R: (Context × Intent × State) → Action, replacing the naive R: Input → Category mapping. The Action Router integrates with the MARIA OS Gate Engine so responsibility is enforced at routing time, not retrofitted afterward. We formalize the action space, define precondition-effect semantics for routable actions, derive routing cost over feasible actions, and show in simulation that action-level routing reduces misrouting by 67%, cuts responsibility-attribution failures by 94%, and achieves 3.2x lower latency than semantic-similarity routing on enterprise decision workloads.
How action routing and gate control compose into a provably safe routing system where each routed action carries complete responsibility provenance
Enterprise AI systems face a core tension: routers must maximize throughput and decision quality, while gate engines must enforce safety constraints and responsibility boundaries. When these subsystems are implemented independently and stacked in sequence, interface failures emerge: routed actions can satisfy routing criteria but violate gate invariants, and gate rules can block optimal routes without considering alternatives. This paper presents a formal composition theory that unifies Gate operator G and Router operator R into a composite operator G ∘ R that preserves safety invariants by construction. We prove a Safety Preservation Theorem showing the composed system maintains gate invariants while maximizing routing quality inside the feasible safety envelope. Using Lagrangian optimization, we derive the constrained-optimal routing policy and show a 31.4% routing-quality improvement over sequential stacking, with zero safety violations across 18 production MARIA OS deployments (1,247 agents, 180 days).
AGENT TEAMS FOR TECH BLOG
Every article passes through a 5-agent editorial pipeline. From research synthesis to technical review, quality assurance, and publication approval — each agent operates within its responsibility boundary.
Editor-in-Chief
ARIA-EDIT-01
Content strategy, publication approval, tone enforcement
G1.U1.P9.Z1.A1
Tech Lead Reviewer
ARIA-TECH-01
Technical accuracy, code correctness, architecture review
G1.U1.P9.Z1.A2
Writer Agent
ARIA-WRITE-01
Draft creation, research synthesis, narrative craft
G1.U1.P9.Z2.A1
Quality Assurance
ARIA-QA-01
Readability, consistency, fact-checking, style compliance
G1.U1.P9.Z2.A2
R&D Analyst
ARIA-RD-01
Benchmark data, research citations, competitive analysis
G1.U1.P9.Z3.A1
Distribution Agent
ARIA-DIST-01
Cross-platform publishing, EN→JA translation, draft management, posting schedule
G1.U1.P9.Z4.A1
Complete list of all 121 published articles. EN / JA bilingual index.
121 articles
All articles reviewed and approved by the MARIA OS Editorial Pipeline.
© 2026 MARIA OS. All rights reserved.