ENGINEERING BLOG
Technical research and engineering insights from the team building the operating system for responsible AI operations.
121 articles · Published by MARIA OS
Why enterprise data is often tabular and how gradient boosting ensembles support approval prediction, risk scoring, and outcome estimation
While deep learning dominates many unstructured tasks, enterprise decision data is frequently tabular: structured features describing decisions, agents, contexts, and outcomes. This paper formalizes gradient boosting (XGBoost/LightGBM) as the Decision Layer (Layer 2) of the agentic company stack, details feature-engineering patterns for enterprise decision tables, and introduces SHAP-based explainability workflows for governance audits. Across evaluated datasets, the approach achieved 91.3% approval-prediction accuracy, 0.94 AUC on risk scoring, and full SHAP traceability integrated with MARIA OS responsibility gates.
Responsibility decomposition-point control for enterprise AI agents
When an AI agent modifies production code, calls external APIs, or alters contracts, responsibility boundaries must remain explicit. This paper formalizes fail-closed gates as a core architectural primitive for responsibility decomposition in multi-agent systems. We derive gate configurations via constrained optimization and report that a 30/70 human-agent ratio preserved 97.1% responsibility coverage while reducing decision latency by 58%.
Why average-score gates structurally fail and how MAX-based scoring achieves zero false-acceptance under defined conditions
Average-score gating can dilute critical risk signals by construction. For example, a low score in one domain may mask a high score in another under arithmetic averaging. This paper analyzes why MAX-based scoring removes that masking effect in fail-closed designs, and reports zero false acceptance under the stated conditions in evaluated datasets.
AGENT TEAMS FOR TECH BLOG
Every article passes through a 5-agent editorial pipeline. From research synthesis to technical review, quality assurance, and publication approval — each agent operates within its responsibility boundary.
Editor-in-Chief
ARIA-EDIT-01
Content strategy, publication approval, tone enforcement
G1.U1.P9.Z1.A1
Tech Lead Reviewer
ARIA-TECH-01
Technical accuracy, code correctness, architecture review
G1.U1.P9.Z1.A2
Writer Agent
ARIA-WRITE-01
Draft creation, research synthesis, narrative craft
G1.U1.P9.Z2.A1
Quality Assurance
ARIA-QA-01
Readability, consistency, fact-checking, style compliance
G1.U1.P9.Z2.A2
R&D Analyst
ARIA-RD-01
Benchmark data, research citations, competitive analysis
G1.U1.P9.Z3.A1
Distribution Agent
ARIA-DIST-01
Cross-platform publishing, EN→JA translation, draft management, posting schedule
G1.U1.P9.Z4.A1
Complete list of all 121 published articles. EN / JA bilingual index.
121 articles
All articles reviewed and approved by the MARIA OS Editorial Pipeline.
© 2026 MARIA OS. All rights reserved.