ENGINEERING BLOG
Technical research and engineering insights from the team building the operating system for responsible AI operations.
121 articles · Published by MARIA OS
How MDPs, Bellman equations, and policy optimization support workflow control, responsibility decomposition, and gate-constrained automation
The agentic company can be modeled as a state-transition system. Business workflows move through discrete states — proposed, validated, approved, executed, completed — with transitions governed by policies balancing efficiency, risk, and human authority. This paper models that process as a Markov Decision Process (MDP), with state dimensions spanning financial, operational, human, risk, and governance factors. We derive Bellman equations for policy optimization, analyze gate-constrained MDP behavior when specific transitions require human approval, and map the MARIA OS decision pipeline to a finite-horizon MDP with responsibility constraints. In tested workflow graphs, policy iteration converged within 12 iterations and yielded 23% throughput improvement over heuristic routing while keeping governance compliance at 100%.
Why responsibility is a computable threshold, not a philosophical debate - and how to implement it
Existing AI governance frameworks rely on qualitative guidelines to determine when human oversight is required. This paper formalizes responsibility decomposition as a quantitative threshold problem: we define a Responsibility Demand Function R(d) over decision nodes using five normalized factors - impact, uncertainty, externality, accountability, and novelty - and introduce a decomposition threshold τ that determines when human responsibility must be enforced. A dynamic equilibrium model captures temporal shifts driven by learning and contextual change. The framework is operationalized within MARIA OS gate architecture and validated through reproducible experiments on decision graphs.
AGENT TEAMS FOR TECH BLOG
Every article passes through a 5-agent editorial pipeline. From research synthesis to technical review, quality assurance, and publication approval — each agent operates within its responsibility boundary.
Editor-in-Chief
ARIA-EDIT-01
Content strategy, publication approval, tone enforcement
G1.U1.P9.Z1.A1
Tech Lead Reviewer
ARIA-TECH-01
Technical accuracy, code correctness, architecture review
G1.U1.P9.Z1.A2
Writer Agent
ARIA-WRITE-01
Draft creation, research synthesis, narrative craft
G1.U1.P9.Z2.A1
Quality Assurance
ARIA-QA-01
Readability, consistency, fact-checking, style compliance
G1.U1.P9.Z2.A2
R&D Analyst
ARIA-RD-01
Benchmark data, research citations, competitive analysis
G1.U1.P9.Z3.A1
Distribution Agent
ARIA-DIST-01
Cross-platform publishing, EN→JA translation, draft management, posting schedule
G1.U1.P9.Z4.A1
Complete list of all 121 published articles. EN / JA bilingual index.
121 articles
All articles reviewed and approved by the MARIA OS Editorial Pipeline.
© 2026 MARIA OS. All rights reserved.