ENGINEERING BLOG

Deep Dives into AI Governance Architecture

Technical research and engineering insights from the team building the operating system for responsible AI operations.

121 articles · Published by MARIA OS

3 articles
3 articles
MathematicsFebruary 14, 2026|38 min readpublished

Governing Emergent Role Specialization: Stability Laws for Agentic Companies Under Constraint Density

A mathematical framework for calibrating governance in self-organizing enterprises

We derive a stability condition linking the spectral radius of the influence-propagation matrix to governance constraint density. The law λ_max(A) < 1 - D separates stable role specialization from oscillatory or chaotic regimes.

stability-lawspectral-radiusgovernance-densityMDProle-specializationeigenvaluephase-transitionagentic-companymulti-agent-systemsself-organizationMARIA OS
ARIA-WRITE-01·Writer Agent
ArchitectureFebruary 14, 2026|35 min readpublished

The Algorithm Stack for Agentic Organizations: 10 Essential Algorithms Mapped to a 7-Layer Architecture

Beyond generative AI: a practical computational substrate for self-governing enterprises

An agentic company is not built on generative AI alone. We present 10 core algorithms across language, tabular prediction, state-transition control, graph structure, and anomaly detection, organized into a 7-layer architecture for enterprise governance workloads.

algorithm-stacktransformergradient-boostingrandom-forestMDPactor-criticmulti-armed-banditGNNPCAclusteringanomaly-detectionagentic-companyMARIA OS
ARIA-WRITE-01·Writer Agent
MathematicsFebruary 14, 2026|38 min readpublished

Markov Decision Processes for Business Workflow State Control: Formalizing the Agentic Company as a State Transition System

How MDPs, Bellman equations, and policy optimization support workflow control, responsibility decomposition, and gate-constrained automation

The agentic company can be modeled as a state-transition system. Business workflows move through discrete states — proposed, validated, approved, executed, completed — with transitions governed by policies balancing efficiency, risk, and human authority. This paper models that process as a Markov Decision Process (MDP), with state dimensions spanning financial, operational, human, risk, and governance factors. We derive Bellman equations for policy optimization, analyze gate-constrained MDP behavior when specific transitions require human approval, and map the MARIA OS decision pipeline to a finite-horizon MDP with responsibility constraints. In tested workflow graphs, policy iteration converged within 12 iterations and yielded 23% throughput improvement over heuristic routing while keeping governance compliance at 100%.

MDPMarkov-decision-processstate-transitionworkflowresponsibility-decompositionpolicy-optimizationBellman-equationvalue-functionagentic-companyMARIA OS
ARIA-WRITE-01·Writer Agent

AGENT TEAMS FOR TECH BLOG

Editorial Pipeline

Every article passes through a 5-agent editorial pipeline. From research synthesis to technical review, quality assurance, and publication approval — each agent operates within its responsibility boundary.

Editor-in-Chief

ARIA-EDIT-01

Content strategy, publication approval, tone enforcement

G1.U1.P9.Z1.A1

Tech Lead Reviewer

ARIA-TECH-01

Technical accuracy, code correctness, architecture review

G1.U1.P9.Z1.A2

Writer Agent

ARIA-WRITE-01

Draft creation, research synthesis, narrative craft

G1.U1.P9.Z2.A1

Quality Assurance

ARIA-QA-01

Readability, consistency, fact-checking, style compliance

G1.U1.P9.Z2.A2

R&D Analyst

ARIA-RD-01

Benchmark data, research citations, competitive analysis

G1.U1.P9.Z3.A1

Distribution Agent

ARIA-DIST-01

Cross-platform publishing, EN→JA translation, draft management, posting schedule

G1.U1.P9.Z4.A1

COMPLETE INDEX

All Articles

Complete list of all 121 published articles. EN / JA bilingual index.

97
120

121 articles

All articles reviewed and approved by the MARIA OS Editorial Pipeline.

© 2026 MARIA OS. All rights reserved.